
ISRAEL JOURNAL OF MATHEMATICS, Vol. 28, No. 4, 1977 

SOME CHARACTERISATIONS 
OF THE ELLIPSOID 

BY 

G. R. BURTON 

ABSTRACT 

We show that a convex body K of dimension d => 3 is an ellipsoid if it has any of 
the following properties: (1) the "grazes" of all points close to K are flat, (2) all 
sections of small diameter are centrally symmetric, (3) parallel (d - 1)-sections 
close to the boundary are width-equivalent, (4) K is strictly convex and all 
( d -  1)-sections close to the boundary are centrally symmetric; the last two 
results are deduced from their 3-dimensional cases which were proved by 
Aitchison. 

I. Introduction 

If K C E  d is a convex body and p E Ed\K, the graze ofp with respect to K is 

the set of points of K contained in support lines passing through p. Our main 

result is: 

THEOREM 1. Let K be a convex body in Ed (d >-_ 3) such that for some ~ > O, 

for every p E E~\K whose distance from K is less than & the graze of p is 

contained in a hyperplane. Then K is an ellipsoid. 

A similar result was proved in 3 dimensions, under assumptions of smoothness 

and with ~ = 0% by Kubota [7]. 

THEOREM 2. LetKbeaconvex  body inE d (d >= 3),2=<j _<- d - 1, andsuppose 

that for some 8 > O, every j-dimensional section of K having diameter less than ~ is 

centrally symmetric. Then K is an ellipsoid. 

Theorems 3 and 4 are generalisations to higher dimensions of results proved in 

3 dimensions by Aitchison [I, 2], and are deduced from these results by simple 

induction arguments; the obvious approach in terms of sections of sections 
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appears to fail, and Aitchison (private communication) has indicated that he is 

no longer convinced by his induction argument in [1] which was intended to 

prove Theorem 3 of the present paper. 

We first give some definitions. Let C C E  u be a compact convex set. We define 

the support function hc of C by h c ( u ) = s u p { x . u  :x ~ C}, and H r ( a , u ) =  

{x E Ed: x. u = h c ( u ) -  a} where u is a unit vector and a >0 .  The width wc(u)  

of C in direction u is hc(u)+ h c ( - u ) ,  and is non-negative and translation 

invariant; two compact convex sets C, D are width-equivalent if there is a 

positive constant A such that wc(u) = AWD(U) for all unit vectors u. Homothet ic  

compact convex sets are width-equivalent, and convex bodies of  constant width 

are width-equivalent. If C and D are compact convex sets in E d-' and f is an 

orthogonal embedding of E d-1 in E u, then C and D are width-equivalent if and 

only if f (C)  and f ( D )  are width-equivalent. 

THEOREM 3. Let K be a convex body in E d (d >- 3) and suppose there exists 

e > 0  such that for every unit vector u and O< a < /3 < e the sections 

Hr(a,  u) n K and Hr(fl,  u) N K are width-equivalent. Then K is an ellipsoid. 

An interesting extension of this result in 3 dimensions is given in [2]. 

THEOREM 4. Let K be a strictly convex body in E d (d >- 3) and suppose that for 

each unit vector u there exists e (u )>O such that HK(o~, u ) n  K is centrally 

symmetric for 0 < ct < e (u). Then K is an ellipsoid. 

The assumption of strict convexity is essential, as may be seen by considering 

the sum of a ball with a line segment. 

2. Preliminary results 

LEMMA 1. Let C be a 2-dimensional convex body which is smooth and strictly 

convex, let U be an arc of c~C and let b be an inner point of C. For each a E aC, let 

a' be the other point of OC having a parallel support line. Ira, b and a' are collinear 

for each a ~ U, then there is a positive number t such that a - b = t(b - a ') for all 

a ~ U .  

PROOF. Choose polar coordinates with centre b, so that c~C = {(r(0), 0): 0 

real}, where r(O) = r(O + 2~)  for each 0, and U = {(r(0), 0): a _-< 0 _-</3}, say. 

Then for a = (r(O),O)~ U, we can write a ' =  (r'(O),O + r  r). For any a = 

(r(O), O)E c9C let k(O) be the angle from a -  b to the support line to C at a, 

measured in the negative sense (see Fig. 1, which shows the case a E U). 
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a' 

Fig. 1 

p 

Then dr~dO = - r(O)cotk(O), so for c~ _-< 0 ~ /3  we have 

, dr dr' 
d ( r )  r - ~ - r - ~  - r ' r c o t k ( O ) + r r ' c o t k ( O + ' n ' ) _  
- ~  ~ - ~r-7)~ (r,) z - 0 

SO r/r' is constant, which proves the Lemma.  

If K is a convex body in E ~ and p C Ed\K,  the affine hull of the graze of p is 

called the graze flat of p, and has dimension d - 1 or d. 

LEMMA 2. Let C be a strictly convex body in E 2 and 0 < ~ < 1. Suppose that 

each line segment I with C 0 aft I = Q and such that each point of I lies within 

distance ~ of C has the property that the graze lines o[ its points are concurrent at an 

inner point of C. Then C is an ellipse. 

PROOF. We first show that C is smooth. Suppose this is false, and let x be a 

non-smooth point of C. Since the non-smooth points of C are countable, we may 

choose a sequence {x(i)} of smooth points, with respective support lines l(i), 

such that x(i)---~x. Let l be a support line to C at x. Then y ( i ) =  1N l(i)---~x; 

choose i* such that l y ( i * ) - x l < &  We can then choose a line segment I 

containing y(i*),  such that C fq a f t / =  ~ ,  l ( i * ) #  aft L and all points of I have 

distance less that 8 from x and lie on support  lines containing x. Then the points 

of I have graze lines which are concurrent at x but at no other point, 

contradicting the hypothesis of the Lemma.  We conclude that C is smooth. 

For any point y ~ OC, let ly denote the support line of C at y;  if q is any 

non-parallel line disjoint from C, let q(y)  be the point of OC (distinct from y) 

whose support line passes through q N ly. We can choose r/ > 0 so that for any 

two points a, b on OC with l a - b ] < 77, lo intersects lb at a point with distance 

less than c5 from C;  for such a pair a, b we define M(a, b) to be that component  

of OC\{a, b} for which Ic intersects /~ for all e in M(a, b). 
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For distinct points a, b U aC whose distance apart is less than 77, choose points 

c, d in c~C having distance less than 7/ from a, such that a, b, d, c are distinct and 

lie in that order on ciM(a,e) .  Let h = l a f q l , ,  j = l ~ N l d ,  k= lb fq l~  and 

m =att{j ,k}.  For any line p through j which meets relint [h,k], define 

f p ( x ) = p ( m ( x ) )  for x E ~ l ( a , b )  (see Fig. 2). Then f, maps J ( a , b )  bijectively 

onto M(a, b'), where b' is a point of sg(a, b) which may be chosen arbitrarily by 

appropriate choice of p. Notice that [e is order-preserving, continuous, and 

extends continuously by .fp(a)--a, ]'p(b)= b'. For x E ~ t ( a , b ) ,  the chords 

[x, m(x)] are concurrent at s (say) on [a, d], and the chords [m(x) , fp(x)]  are 

concurrent at tp (say) on [a, d], for fixed p. 

o j 

fpC h 

fl'l 

Fig. 2 

We may apply a projective transformation qb to map m to infinity and ensure 

that [a, d] is perpendicular to la (we shall use the same symbols as above to 

denote images under ~;  see Fig. 3). Observe that p, lo, ld are all parallel, that lc is 

parallel to lb and that Ix is parallel to Imt~). We choose coordinates so that a = 0, 

d = (d l ,  0) with d~ > 0, and/~ is the x2-axis with b2 > 0. Then the lines p are those 

lines {x : x~ = - 13} with/3 > 0. For real A write 7r~ for the projective transforma- 

tion 

Xj X2 ) 
(x,,  x2) = 1 + 1 

and let ~ be the group of projective transformations which have the form 

-(Z,--; g" + : \ 

and are non-singular. Then ~ contains all the maps r~ and x ~, u + e ( x  - u), 

with e, u constants such that e ~ (J, u2 = 0, and their inverses. 



U 
----~x2 

x 1 

P 

d 

VO1. 28, 1 9 7 7  CHARACTERISATIONS OF ELLIPSOIDS 343 

Fig. 3 

For x E ~4(a, b), lx is parallel to L ~  and the chords [x, m(x)] are concurrent 

at s. Hence by Lemma 1 there is a constant v ~ 0  such that m ( x ) - s  = v(s  - x )  

for all x ~ ~/(a, b). For y E m~g(a, b)  the lines ly and lp~y~ are concurrent on 

p = {x: x~ = -A-l},  say, so the lines zr~l~ and 7r~Ip~y) are parallel. Further the 

chords [y,p(y)]  are concurrent at tp, so by Lemma 1 there is a constant/z such 

that zr~p(y) -Tr~t~=iz (zr~ te -zr~(y) )  for y ~ m s g ( a , b ) .  Hence fp(x)  = 

zr:~(zrdp + tz(Trde - zr~(s + u(s - x ) ) )  which shows that fp ~ ~.  

Inverting ~,  we see that f, is a projective transformation admissible for 

cl,ff(a, b). By appropriate choice of p, we can ensure that any given point x of 

M(a, b) is mapped by fp to any given point of s4(a, x). It follows that for any 

point u C 0C and v ~ 0C with distance less than r/ from u, there is a 

non-singular projective transformation f and a neighbourhood U of u such that 

f ( u ) = v  and f ( U N a C ) c a c .  Since 0C is twice differentiable almost 

everywhere (see for example [4]), this implies that aC is twice differentiable 

everywhere. Since C is strictly convex, almost all, and hence all, points of OC 

have non-zero second derivatives (working in some coordinate system in the 

tangent and normal). 

Let us re-apply qb and return to the situation of Fig. 3. We can choose a sub-arc 

G of ~ (a ,  b) with a as one end, the other end being e say, such that the points of 

G can be parametrised by their x2-coordinates. Then, by a form of Taylor's 

Theorem given in [6] (but note a misprint in some editions) G is an arc of a curve 

xl = q~x 22 + o (x 2 z) for some ~p > 0. For positive integers n let p (n) = {x : x~ = 1/n }, 

and f"  = fp~,~. As n --* 0% p ( n )  approaches l~ so f"(x)---~ a for each x ~ G. Since 
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f"(a) = a, and f "  maps  points  of  G to points  whose coord ina tes  have  unchanged  

signs, we may write 

a,,Xl ~,,Xe ) 
f"  (x )  = \r )3 . '  r +/3 .  

where  a . ,  /3. and 3'. are non-zero  and have  the same  sign. 

Let  F be  the pa rabo la  {x: x~ = ~0x]}, and let g(x) = (x,, k/x~]~o) E F for  x E G. 

Then  g(x)2 = X/(x]+ o(x~)) and hence  g(x)dx2---, 1 as x ~ a .  For  fixed x ~ G 

we have  

g (f" (x __, 1 

as n ~ ~.  Now 

[(f" )- '(g (f" (x)))]2 = g (f" (x))2 
[ ( / " ) - ' ( f " ( x ) ) ] :  

since f "  has the effect of a l inear  t r ans fo rmat ion  on lines parallel  to lo; 

consequent ly ,  [ ( f " ) - ' ( g ( f "  (x)))]2--> x2 as n ---> oo. Fur ther ,  [(f")-~(g(f"(x)))], = x,. 
Let  F .  = ( f " ) - T ,  so ( f " ) -~ (g ( f " (x ) ) )  E F.  for  all x E G. The  above  discussion 

shows that  for  0 < u < e,, we can choose  a n u m b e r  v. (u )  such that  (u, v. (u))  E F.  

and v.(x,)--->x2 as n ~ for  each x E G. 

If G = 0 for  all sufficiently large n, then we may  suppose  for large n that  

F .  = {x: o-.x~ = x~} where  tr. > 0 ,  and so v~(u)= tr.u. It follows that  or. tends to 

a limit t r > 0  as n--.> oo, so G is an arc of the pa rabo la  {x: x~ = trx~}. 

If  s t .#  0 for  infinitely m a n y  n, by choosing a subsequence ,  relabell ing and 

r r rechoos ing  the constants ,  we may  suppose  that  r = 1 and a .  has the same  sign 

for  all n. Thus  F.  = {y: o-.y~(/3. + yl)= ya 2} where  o'. = a.l(~oy2.) has the sign of 

a. .  We  first consider  the case o .  > 0 for  all n. Then  

F.  = {(u, v): (u + q.)2/q2_ v2/r2 = 1} 

where  q. = / 3 . / 2  and r. =/3.X/o'-d2,  so that  

= 2u +q./ 

I f  {q.}7=~ is unbounded ,  then {r2./q.}7=~ must  have  a convergen t  subsequence ,  in 

which case G must  be a line segment ,  contradic t ing the strict convexi ty  of  C. It is 

not possible  that  q. ~ 0 ,  for  then {r2./q2.}~=~ must  converge  in which case G is 

again a line segment .  Thus  some  subsequence  of {q.}~=l has a posit ive limit q, 
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and the corresponding subsequence of {r.}~=, has a positive limit r. Then G is an 

arc of the hyperbola 

\ q / 

We now suppose that o-, < 0 for all n. Then 

\ q. / 

for some positive qn and r., so 

= r-z" 2 u -  
rn(u) qo 

As before, {q,}:=~ is bounded, and if q.-->0 then v2.(u) is negative for large n, 

which is impossible. We conclude that G is an arc of the ellipse 

\ q / 

for some real q and r. Thus, in all possible cases, O is an arc of a second-order 

c u r v e .  

Let us invert ep. Let A be a maximal open arc of a second-order curve in 0C. If 

A is not the whole of 0C, then A has an end point z say. Let w be a point of A 

having distance less than ~ from z. Then there is a neighbourhood U of w and a 

non-singular projective transformation f admissible for U such that f ( w ) =  z 

and f ( U  n oC) COC. Since f ( U  n A) is an open subset of a second order  curve 

and intersects A, we have a contradiction to the maximality of A. Hence 0C is a 

second-order curve, and must therefore be an ellipse. 

3. Proofs  of the  t h e o r e m s  

PROOF OF THEOREM 1. First consider the case d = 3. We prove that K is 

strictly convex. Suppose this is false, and let I be a line segment in OK. Choose a 

point x E (aft I)\K having distance less than 8 from K. The graze flat of x is a 

plane 7r containing I ;  let l be a line in 7r through x disjoint from K. There  is a 

support plane oJ through I distinct from 7r. Then oJ n K is a non-empty subset of 

the graze of x but is not contained in 7r. This contradiction shows that K is 

strictly convex. 

Let p be a fixed interior point of K, and let 7r be an arbitrary plane containing 

p. Consider any line segment I C ~ such that (af t / )  n (~r N K)  = O and every 
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point of I has distance less than 6 from 7r n K. There are just two support planes 

w,, to2 of K which contain L Let q~, q2 be their respective points of contact with 

K. The line segment [q~, q2] intersects 7r n K at a relatively interior point q, since 

K is strictly convex. If x E / ,  then q~ and q2 lie in the graze plane ~ of x with 

respect to K. Thus ~ n cr is a line through q, and the points of (~ n ~r)n 

(OK n cr) lie on support lines of 7r n K which contain x, so ~- n ~0 is the graze 

line of x with respect to cr n K, relative to ~-. We have now shown that cr n K 

satisfies the hypothesis of Lemma 2, and is therefore an ellipse. Thus all sections 

of K through p are ellipses, which shows (see [3, p. 91]) that K is an ellipsoid. 

We now suppose that d => 4, let p be a fixed interior point of K and let 11 be an 

arbitrary hyperplane containing p. If x is any point of IJ\K whose distance from 

II n K is less than 6, the graze A of x with respect to K affinely generates a 

hyperplane F. We can choose a (d - 2)-flat A in II through x but disjoint from K. 

Then some hyperplane fl which contains A but is distinct from I] supports K, 

which shows that II ~ F. The graze of x with respect to H n K is 11 n A, which 

lies in the (d - 2)-flat 11 n F. Thus 11 n K satisfies the conditions of the Theorem 

in dimension d - 1. If we make the inductive hypothesis that the Theorem holds 

in-dimension d - 1, then every ( d .  1)-dimensional section of K through p is an 

ellipsoid, so K is an ellipsoid (see [3, p. 91]). By induction, the Theorem is 

proved. 

Before proving Theorem 2, we need a result of S.P. Olovjanischnikoff [8], 

which we will state as Lemma 3. If C is a convex body and u is a member  of the 

unit sphere S 2, in E 3, let Q ( u ) = { e > O :  H c ( e ' , u ) n C  is non-empty and 

centrally symmetric for 0 < e '  < e }. Define e (u) = sup Q (u) if Q (u) ~ O, or 

e ( u ) = 0  if Q ( u ) = Q ,  and N c ( u ) = { x E O C : O < - h c ( u ) - x . u < e ( u ) }  or 

No(u)  = Q if e(u)  = 0. The face f c (u )  of C in direction u is Hc(O, u)  n C. 

LEMMA 3. Let C be a convex body in E 3, A an open connected non-empty 

subset of aC, and D an open non-empty subset of S 2, such that fc(u ) C A C Nc (u ) 

for all u E D. Then A is a subset of a second-order surface (that is, a paraboloid, 

ellipsoid or hyperboloid of two sheets) or of an elliptical cone whose apex is 

contained in A. 

PROOF OF THEOREM 2. First consider the case d = 3, j = 2. Let a be an 

extreme point of K, and let F be the set of points of K having distance at least 

6/2 from a. Then c o n v F  is compact and a ~ conv F, so we may strictly separate a 

from F with a plane: that is, there is a v E S z and a real number t~ such that 

a . v > a > x . v  for a l l x @ F .  Let / 3 = ( a . v - a ) / 3 ,  a n d l e t A  = { x E S K : x . v >  

a+2 /3} ,  so that A is an open connected set in OK and a E A .  An easy 
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contradiction argument  proves the existence of an open set D1 C S 2 with v E D1 

and fK(u)CA for all u~D1.  We then choose an open set D2CS 2 with 

v E D2 C D1 and x. u => a +/3 for all u E D2 and x E A. Next we choose an open 

set D 3 C S  z such that v E D a C D 2  and x. u -< a for all u E D3 and x E F. For 

u E D3, if 0 <  e < hK(u)-a,  then HK(e,u) does not intersect F, so that 

HK(e, u)O K has diameter  less than ~ and is therefore centrally symmetric.  

Thus fK(u)CA C N ~ ( u )  for all u E D 3 .  By Lemma  3, A is a subset of a 

second-order surface or of an elliptical cone with apex a. 

In particular, this shows that K has no facets, since any facet would contain an 

extreme point of K. Suppose that B is a maximal open connected subset of an 

elliptical cone surface/~ such that B C OK and the apex of /~ lies in B. We may 

assume that o is the apex of /3  and that /~  N S 2 CB. Then for any x in E3\{o}, let 

ray(x)  be the set {hx: A >0}. For any x E B n S 2, ray(x)  intersects OK in a line 

segment [o, r say; f rom this it follows that for all such x, ray (x) intersects B 

in a half-open line segment [o, g(x)), and hence ray(x)  intersects c lB in a line 

segment [o, b(x)],  where b(x) is a boundary point of B. Let x ~ B n S 2. If b(x) 
were an extreme point, then there would be an open connected subset A of an 

elliptical cone apex b(x) or of a second-order  surface, with b(x) E A C OK which 

is impossible, since A would have to be a subset of /3, contradicting the 

maximality of B. We conclude that b(x) is relatively interior to a line segment 

I COK, and I must be a subset of ray(x) ,  for otherwise a f t ( / U  [o, b(x)]) would 

intersect K in a facet. This shows that Ic(x)l > I b(x)l.  Let T = c lb (B  n $2), so 

that T is a subset of the boundary of B, and hence any point of T is relatively 

interior to [o, c(x)] for some x. For each positive integer n let T,={y E T: 
(1 + (n lY I)-I)Y E K}, so T. is closed. Since T is a complete  metric space and 

T=U~=,T,, by the Baire Category Theorem we can choose a point rET, a 
positive integer n and a real number  3/such that 0 < 43/<  1/n and all points of T 

with distance less than 43, f rom r lie in T,. By the definition of T w e  can choose 

x E B n S 2 such that ] b ( x ) -  r I < 3,. Then b(x)+ 3,x belongs to OK\clB so we 

can choose a real number /z  such that 0 < / z  < 3' and every point having distance 

less than /z from b(x)+ 3,x is not a m em ber  of clB. Let F be an open arc of 

B O S 2 such that x E F and ray(y)  contains a point having distance less than /z  

f rom b(x) + 3,x for all y E F. Thus for y E F we have I b(y)l < l b ( x ) l  + 3, +/z.  

Since b(x)EclB,  we can choose an open arc F ' C F  such that for each y E F ' ,  

ray(y)  contains a point of B having distance less than ",/ f rom b(x), so that 

Ib(y)l>lb(x)[-3,. Hence for y,y 'EF'  we have [Ib(y)[-lb(y')l[<33, and, by 

construction, for y ~ F', b(y) lies on a line segment [p, q] Where p has distance 

less than /z  from b(x)+ 3"x and q has distance less than 3, f rom b(x), and b(x) 
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has distance less than ~/ from r, so that b(y) has distance less than 3y from r, 

which ensures that I c(y)l>lb(y)l+ 1/n. Hence {Az: z E F', 0 <  A < l b ( y ) l +  ~/} 

is an open subset of /~ which contains b(y),  for any y E F ' ,  and which is 

contained in OK, contradicting the maximality of B. We conclude that every 

extreme point of K is contained in an open subset of a second-order  surface in 

OK, and so, since any edge contains an extreme point, that K is strictly convex. 

Let G be a maximal open subset of a second order surface in OK. If G # OK, then 

G has a boundary point a which must be extreme, so there is a subset A of a 

second-order  surface such that A is open and a E A C OK. Then A and G have 

an open subset in common,  and so are subsets of the same surface, contradicting 

the maximality of G. Hence G = OK, so that K is an ellipsoid. This completes  

the case d = 3 ,  j = 2 .  

We now suppose n ->3 and that the result holds for d = n, j = n -  1. Let 

K C E  "+t satisfy the hypothesis of the Theorem for d = n + 1, j = n. Consider an 

orthogonal projection fl  on an n-dimensional linear flat ~r such that no line 

segment in OK is parallel to rr 1. For any ( n - 1 ) - f l a t  to in rr, we have 

l)((to + l r ' )  O K)  = to n f~(K). For some e > 0, for each (n - 1)-flat to C r such 

that diam(to n f I (K))  < e we have diam((to + ~"~) n K)  < 6; otherwise, by tak- 

ing e = 1, �89 ~ , . . -  we can prove the existence of a line segment of length 6 

parallel to rr • in OK, contrary to the choice of ~r. Hence,  since a projection of a 

centrally symmetric set is centrally symmetric,  I ) (K)  satisfies the hypothesis of 

the Theorem for d = n, ] = n - 1, so that I I (K)  is an ellipsoid. The set of unit 

vectors representing directions of line segments in OK has o-finite ( n -  1)- 

measure on the unit sphere in E n+' (see Ewald, Larman and Rogers [5]). 

Therefore,  by taking limits, all n-dimensional  orthogonal projections of K are 

ellipsoids, which ensures that K is an ellipsoid. (This may be deduced by polar 

duality from the result that for k > l -> 2, a k-dimensional  convex body, all of 

whose /-dimensional sections through a fixed inner point are ellipsoids, is an 

ellipsoid, which is given by Busemann in [3, p. 91].) This inductive step 

completes the proof in the case d _-> 3, j = d - 1. 

Finally we consider the case d - 2 _-> j => 2. If W is a (j + 1)-dimensional section 

of K, then every j-dimensional  section of W having diameter  less than 8 is 

centrally symmetric,  so that W is an ellipsoid by the cases already established. 

Thus all (j + 1)-dimensional sections of K are ellipsoids, so K is an ellipsoid (see 
[3, p. 91]). 

PROOFS OF THEOREMS 3 AND 4. These results have been proved for d = 3 by 

Aitchison [1, 2]. Let d -> 4 and suppose that Theorems 3 and 4 hold in d - 1 
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dimensions. If K is a convex body in E a and f~ is an orthogonal projection on a 

linear (d - 1)-flat 7r, then for any unit vector u E ~', we have h.K(u) = hK(u) and 

Hn~c(a ,u)Nf~K=l i~HK(a,u)NK)  for a > 0 .  Using the fact that width- 

equivalence, central symmetry and strict convexity are inherited by orthogonal 

projections, we see that if K satisfies the conditions of Theorems 3 or 4, then f~K 

satisfies the conditions of Theorems 3 or 4 respectively in d -  1 dimensions. 

Hence all the (d - 1)-dimensional orthogonal projections of K are ellipsoids, so 

K is an ellipsoid (this follows by duality from a result on p. 91 of [3]). This 

induction argument completes the proofs of Theorems 3 and 4. 
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